Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237393

RESUMEN

Eighteen novel compounds harboring the privileged thienopyrimidine scaffold (5a-q, and 6a),were designed based on molecular hybridization strategy. These compounds were synthesized and tested for their inhibitory activity against four different carbonic anhydrase isoforms: CA I, II, IX, and XII. Microwave and conventional techniques were applied for their synthesis. Compounds 5b, 5g, 5l, and 5p showed the highest inhibition activity against the four CA isoforms. Compound 5p exhibited promising inhibitory activity against CA II, CA IX and CA XII with KI values of8.6, 13.8, and 19 nM, respectively, relative to AAZ, where KIs = 12, 25, and 5.7 nM, respectively. Also, compound 5 l showed significant activity against the tumor-associated isoform CA IX with KI = 16.1 nM. All the newly synthesized compounds were also screened for their anticancer activity against NCI 60 cancer cell lines at a 10 µM concentration. Compound 5n showed 80.38, 83.95, and 87.39 % growth inhibition against the leukemic cell lines CCRF-CEM, HL-60 (TB), and RPMI-8226, respectively. Also, 5 h showed 87.57 % growth inhibition against breast cancer cell line MDA-MB-468; and 66.58 and 60.95 % inhibitionagainst renal cancer cell lines UO-31, and ACHN, respectively. A molecular docking studywas carried out to predict binding modes of our synthesized compounds in the binding pockets of the four carbonic anhydrase isoforms, and results revealed that compounds 5b, 5g, 5l, and 5p succeeded in mimicking the binding mode of AAZ through metal coordination with Zn+2 ion and binding to the amino acids Thr199, His94, and His96 that are critical for activity.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Pirimidinas , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Anhidrasas Carbónicas/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/química , Isoformas de Proteínas/metabolismo
2.
Bioorg Med Chem ; 94: 117467, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37722299

RESUMEN

Sulfonamides constitute an important class of classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Herein we have accomplished the conjugation of biotin with an ample number of sulfonamide motifs with the aim of testing them in vitro as inhibitors of the human carbonic anhydrase (hCA) isoforms I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). Most of these newly synthesized compounds exhibited interesting inhibition profiles, with activities in the nanomolar range. The presence of a 4-F-C6H4 moiety, also found in SLC-0111, afforded an excellent selectivity towards the tumor-associated hypoxia-induced hCA isoform XII with an inhibition constant (KI) of 4.5 nM. The 2-naphthyl derivative was the most potent inhibitor against hCA IX (KI = 6.2 nM), 4-fold stronger than AAZ (KI = 25 nM) with very good selectivity. Some compounds were chosen for antiproliferative activity testing against a panel of 3 human tumor cell lines, one compound showing anti-proliferative activity on glioblastoma, triple-negative breast cancer, and pancreatic carcinoma cell lines.

3.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298353

RESUMEN

The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo , Anhidrasas Carbónicas/metabolismo , Antígenos de Neoplasias , Cumarinas/farmacología , Cumarinas/química , Glicoconjugados , Carbohidratos
4.
Biochimie ; 198: 48-59, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35307483

RESUMEN

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.


Asunto(s)
Acetilesterasa , Bacillus , Proteínas Bacterianas , Acetilesterasa/química , Acetilesterasa/genética , Secuencia de Aminoácidos/genética , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli , Esterasas/metabolismo , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato/genética
5.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209105

RESUMEN

Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure-activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24-27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).


Asunto(s)
Desarrollo de Medicamentos , Compuestos de Organoselenio/química , Fenoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Radicales Libres/antagonistas & inhibidores , Humanos , Estructura Molecular , Relación Estructura-Actividad
6.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142908

RESUMEN

Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88‒2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14‒32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents.

7.
Molecules ; 25(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023899

RESUMEN

Natural deep eutectic solvents (NADES) are a type of ionic liquid (IL) or deep eutectic solvent (DES), the ingredients of which are exclusively natural products (non-toxic and environmentally friendly). Here, we explore the potential of NADES as an alternative to conventional organic solvents (e.g., aqueous methanol or ethanol) for the extraction of flavonoids from Scutellaria baicalensis stem bark to investigate their extractability depending on structural variation. Four NADES, each containing citric acid in combination with ß-alanine, glucose, xylitol, or proline (at a molar ratio of 1:1), and a variable amount of water, were used to extract the flavonoid aglycones: baicalein (1), scutellarein (3), wogonin (5), and oroxylin A (7), and their glycosides, baicalin (2), scutellarin (4), wogonoside (6) and oroxyloside (8) from the powdered bark of S. baicalensis. The chemical profile and yield of the extracts were determined using HPTLC and HPLC. The extractability of individual flavonoids was found to be influenced by the concentration of water (20-60%, w/w) in the NADES. Among the tested flavonoids, the extraction yield of baicalein (1), scutellarein (3), wogonin (5), oroxylin A (7) with NADES was 2 to 6 times that of aqueous methanol. However, the amount of their corresponding glycosides (baicalin (2), wogonoside (6) and oroxyloside (8)) extracted with NADES was only 1.5-1.8 times higher than with aqueous methanol. Interestingly, the more hydrophilic glycosides were less extracted than their corresponding aglycones despite the high hydrophilicity of the NADES. These results prove that NADES may be used for extraction of compounds with a wide range of hydrophilicity.


Asunto(s)
Ácido Cítrico/química , Flavonoides/análisis , Scutellaria baicalensis/química , Solventes/química , Agua/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Glucosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Extractos Vegetales/química , Prolina/química , Xilitol/química , beta-Alanina/química
8.
Eur J Med Chem ; 179: 493-501, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271961

RESUMEN

Herein we report a straightforward preparation of new antiproliferative agents based on the hybridization of a coumarin skeleton and an organoselenium motif. Three families were obtained: isoselenocyanate, selenocarbamates and selenoureas. The main purpose of these hybrid structures is the development of new antiproliferative agents with a multitarget mode of action. A strong correlation between the nature of the organosenium scaffold and the antiproliferative activity was observed. Thus, whereas selenocarbamates proved to be inactive, or moderate antiproliferative agents, isoselenocyanate and most of the selenoureas behaved as strong antiproliferative agents, with GI50 values within the low micromolar range. Interestingly, a good selectivity toward tumor cell lines was found for some of the compounds. Moreover, an increase in the ROS level was observed for tumor cells, and accordingly, these pro-oxidant species might be involved in their mode of action. Overall, title compounds were found not to be substrates for P-glycoprotein, which is overexpressed in many cancer cells as a way of detoxification, and thus, to develop drug resistance. In silico calculations revealed that the selenoderivatives prepared herein might undergo a strong interaction with the active site of HDAC8, and therefore, be potential inhibitors of histone deacetylase 8. In vitro assessment against HDAC8 revealed a strong inhibition of such enzyme exerted by selenoureas, particularly by symmetrical coumarin-containing selenourea. Two compounds showed good antiproliferative data and appear as plausible leads for further testings. The symmetrical coumarin 6 displays the best in vitro inhibition of HDAC8, but is affected by P-gp. In contrast, the N-butyl selenourea coumarin derivative 5a escapes P-gp resistance but has lower HDAC8 inhibition activity.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Compuestos de Organoselenio/farmacología , Proteínas Represoras/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Relación Estructura-Actividad
9.
J Agric Food Chem ; 67(26): 7281-7288, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31198027

RESUMEN

Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.


Asunto(s)
Arilsulfotransferasa/química , Proteínas Bacterianas/química , Depuradores de Radicales Libres/química , Alcohol Feniletílico/análogos & derivados , Acetilación , Biocatálisis , Cromatografía Líquida de Alta Presión , Desulfitobacterium/enzimología , Depuradores de Radicales Libres/síntesis química , Espectrometría de Masas , Estructura Molecular , Aceite de Oliva/química , Fenoles/química , Alcohol Feniletílico/síntesis química , Alcohol Feniletílico/química , Sulfatos/química
10.
J Nutr Biochem ; 57: 110-120, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29694939

RESUMEN

The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 µg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1ß and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies.


Asunto(s)
Inflamasomas/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Acetilación , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Femenino , Hemo-Oxigenasa 1/metabolismo , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Quinasas Janus/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Alcohol Feniletílico/química , Alcohol Feniletílico/farmacología , Factor de Transcripción STAT3/metabolismo
11.
Future Med Chem ; 10(3): 319-334, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400087

RESUMEN

AIM: The increasing number of cancer cases has stimulated researchers to seek for novel approaches. We have combined two bioactive moieties: a polyphenolic scaffold and an organoselenium motif. Four different families (isothiocyanates/thioureas, and their selenium isosters) derived from dopamine, (±)-norepinephrine and R-epinephrine were accessed. RESULTS: Heterocumulenes derived from dopamine and ß-O-methylnoradrenaline were strong antiproliferative agents (GI50<10 µM). Selenoureas derived from ß-O-methylnoradrenaline bearing electron-withdrawing groups (halogen, -NO2, -Ph) on the phenyl ring, were also strong antiproliferative agents, besides exhibiting good antiradical and glutathione peroxidase-like activities. Up to a 14-fold increased activity was achieved compared with classical chemotherapeutic agents, exhibiting also different mechanisms of action (cell cycle assays). Redox analysis on HeLa cells suggested an increase of ROS levels after the incubation period. CONCLUSION: the combination of organoselenium and phenolic moieties might provide valuable lead compounds with relevant antiproliferative properties.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Calcógenos/farmacología , Fenoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Calcógenos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Fenoles/síntesis química , Fenoles/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
12.
Chem Commun (Camb) ; 53(87): 11869-11872, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29038809

RESUMEN

The first example of a molecular logic gate based on selenourea/anion host-guest interaction that performs a ternary logic operation using an 1H-NMR easy to read response output is described here. Selenoureas are very versatile receptors for anion binding, capable of forming both mono- and bi-coordinated adducts at room temperature in solution.


Asunto(s)
Aniones/química , Compuestos de Organoselenio/química , Urea/análogos & derivados , Sitios de Unión , Computadores Moleculares , Espectroscopía de Protones por Resonancia Magnética , Urea/química
13.
Future Med Chem ; 8(18): 2185-2195, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27845568

RESUMEN

AIM: Numerous chronic diseases exhibit multifactorial etiologies, so focusing on a single therapeutic target is usually an inadequate treatment; instead, multi-target drugs are preferred. Herein, a panel of phenolic thioureas and selenoureas were designed as new prototypes against multifactorial diseases concerning antioxidation and cytotoxicity, as a pro-oxidant environment is usually found in such diseases. RESULTS: Selenoureas were excellent antiradical agents and biomimetic catalysts of glutathione peroxidase for the scavenging of H2O2. They were also potent and selective cytotoxic agents against cancer cells, in particular HeLa (IC50 2.77-6.13 µM), apoptosis being involved. Selenoureas also reduced oxidative stress in HeLa cells (IC50= 3.76 µM). CONCLUSION: Phenolic selenoureas are promising lead structures for the development of drugs targeting multifactorial diseases like cancer.


Asunto(s)
Antioxidantes/farmacología , Calcógenos/farmacología , Citotoxinas/farmacología , Diseño de Fármacos , Norepinefrina/farmacología , Compuestos de Organoselenio/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcógenos/química , Citotoxinas/síntesis química , Citotoxinas/química , Células HeLa , Humanos , Norepinefrina/química , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...